Dienst van SURF
© 2025 SURF
The paper explores the process of early growth of entrepreneurial science-based firms. Drawing on case studies of British and Dutch biopharmaceutical R&D firms, we conceptualize the speed of early growth of science-based firms as the time it takes for the assembly (or combined development) of three types of critical resources - a functionally-diverse management team, early fundraising and development of technology. The development of these resources is an unfolding and interrelated process, the causal direction of which is highly ambiguous. We show the variety of paths used by science-based firms to access and develop these critical resources. The picture that emerges is that the various combinations of what we call "assisted" and "unassisted" paths combine to influence the speed of firm growth. We show how a wide range of manifestations of technology development act as signaling devices to attract funding and management, affecting the speed of firm development. We also show how the variety of paths and the speed of development are influenced by the national institutional setting.
There has probably never been such an intense debate about the layout of the countryside as the one that is currently raging. There are serious concerns about the landscape, which is being rapidly transformed by urbanization and everything associated with this process, and not only in the Netherlands but also far beyond its borders. Everyone has something to say in this society-wide debate, from local to national governments, from environmental factions to the road-user's lobby, and from those who are professionally involved to concerned private parties. In many cases it is a battle between idealized images and economic models, between agricultural reality and urban park landscapes, between ecological concerns and mobility. This issue of OASE explores the potential significance of architectonic design for transformation processes on the regional scale. Besides considering the instruments that are available to the designer to fulfil this task, the authors also consider how the design can exercise a 'positive' influence on such processes. The various contributions shed light on the potential significance of territory in contemporary design practice and offer critical reflection on the topical discourse that has evolved over recent years.
We provide greater theoretical precision to the concept of productive opportunities of Penrose. We show firm emergence as a recursive cycle of changing productive opportunities. We show how those opportunitiesresult from the technological base of the firm and are associated with the particular characteristics of the technology.We also show how productive opportunities require the assembly of different internal and externalresources, and therefore partners. We address explicitly how the firm and its potential partners perceive uncertainty and single out the different mechanisms used by the firm to address uncertainty—envisioning, pooling, and staging—to secure resources from external partners and exploit the identified productive opportunities in a timely manner.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.