Dienst van SURF
© 2025 SURF
The Art of Criticism: A European Network for Experiments in Art CriticismTogether with partners from the field of art criticism, the Institute of Network Cultures has set up the project The Art of Criticism: a platform for research, experiments and policy making in the field of art criticism. Solid ground for reflection on art and culture in both niche and mainstream media is necessary for sound democratic societies, but financial and political developments across Europe have led to an increasingly unstable culture of critique. The project is aimed at strengthening such a culture of critique through facilitating and stimulating experiments in art criticism with the use of digital technology, and bringing together partners from many different European countries.
The concept of biodiversity, which usually serves as a shorthand to refer to the diversity of life on Earth at different levels (ecosystems, species, genes), was coined in the 1980s by conservation biologists worried over the degradation of ecosystems and the loss of species, and willing to make a case for the protection of nature – while avoiding this “politically loaded” term (Takacs, 1996). Since then, the concept has been embedded in the work of the Convention on Biological Diversity (CBD, established in 1992) and of the Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES, aka ‘the IPCC for biodiversity’, established in 2012). While the concept has gained policy traction, it is still unclear to which extent it has captured the public imagination. Biodiversity loss has not triggered the same amount of attention or controversy as climate change globally (with some exceptions). This project, titled Prompting for biodiversity, investigates how this issue is mediated by generative visual AI, directing attention to both how ‘biodiversity’ is known and imagined by AI and to how this may shape public ideas around biodiversity loss and living with other species.
LINK
In the game of online visibility; cuddly animals, selfies, houseplants, bro-culture, health mantras, and Fiji water bottles are now strangely powerful tools. It is no coincidence that these images and sub-cultures are also commonly utilized in the rapidly growing category called ‘post-internet art’. There is a definite link between the kinds of images and meme strategies used in many post-internet practices, and the swift proliferation of post-internet art into the gallery and collecting scene.
MULTIFILE
Production processes can be made ‘smarter’ by exploiting the data streams that are generated by the machines that are used in production. In particular these data streams can be mined to build a model of the production process as it was really executed – as opposed to how it was envisioned. This model can subsequently be analyzed and stress-tested to explore possible causes of production prob-lems and to analyze what-if scenarios, without disrupting the production process itself. It has been shown that such models can successfully be used to diagnose possible causes of production problems, including scrap products and machine defects. Ideally, they can even be used to model and analyze production processes that have not been implemented yet, based on data from existing production pro-cesses and techniques from artificial intelligence that can predict how the new process is likely to be-have in practice in terms of data that its machines generate. This is especially important in mass cus-tomization processes, where the process to create each product may be unique, and can only feasibly be tested using model- and data-driven techniques like the one proposed in this project. Against this background, the goal of this project is to develop a method and toolkit for mining, mod-elling and analyzing production processes, using the time series data that is generated by machines, to: (i) analyze the performance of an existing production process; (ii) diagnose causes of production prob-lems; and (iii) certify that a new – not yet implemented – production process leads to high-quality products. The method is developed by researching and combining techniques from the area of Artificial Intelli-gence with techniques from Operations Research. In particular, it uses: process mining to relate time series data to production processes; queueing networks to determine likely paths through the produc-tion processes and detect anomalies that may be the cause of production problems; and generative adversarial networks to generate likely future production scenarios and sample scenarios of production problems for diagnostic purposes. The techniques will be evaluated and adapted in implementations at the partners from industry, using a design science approach. In particular, implementations of the method are made for: explaining production problems; explaining machine defects; and certifying the correct operation of new production processes.
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Het doel van dit interdisciplinaire SIA KIEM project Fluïde Eigenschap in de Creatieve Industrie is te onderzoeken of en hoe gedeelde vormen van eigenaarschap in de creatieve industrie kunnen bijdragen aan het creëren van een democratischer en duurzamer economie, waarin ook het MKB kan participeren in digitale innovatie. Het project geeft een overzicht van beschikbare vormen van (gedeeld) eigenaarschap, hun werking en hoe deze creatieve professionals kunnen ondersteunen bij de transitie naar de platformeconomie. Dit wordt toegepast op een concrete case, dat van een digitale breimachine. Naast het leveren van een goede praktijk, moet het project leiden tot een groter internationaal onderzoeksvoorstel over Fluid Ownership in the Creative Industry, dat dieper ingaat op de beschikbare eigendomsoplossingen en hoe deze waarde zullen creëren voor de creatieve professional.