Dienst van SURF
© 2025 SURF
Plant-based proteins, like water lentils, generally result in lower environmental impact compared to animal-based protein.
MULTIFILE
Plant-based proteins, like water lentils, generally result in lower environmental impact compared to animal-based protein.
MULTIFILE
The Ecocentric and Anthropocentric Attitudes toward the Sustainable Development (EAATSD) scale measures environmental concern in relation to sustainable development. This article will discuss how this scale was tested with three groups of Dutch higher education students. Findings demonstrate that anthropocentric and ecocentric values are independent of the students’ chosen course of study, suggesting that students attracted by the ‘sustainable development’ course title do not necessarily associate ‘sustainability’ with ecocentric aims. This article discusses why ecocentric values are beneficial to the objective of a sustainable society and proposes ways forward in which these values can be enhanced in learners. https://doi.org/10.3390/educsci7030069 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
In 2017, renowned Prof Kate Raworth from Oxford University and Amsterdam University introduced Doughnut Economics, an economic model to enable humans to thrive within the planetary boundaries and resources. Several private and public actors, including the city of Amsterdam, adopted the model in their circular economy development's strategies. Doughnut-Architecture aims to develop further the AREA (Atelier for Resilient Environmental Architecture) Framework, a tool designed by graduating students Charlotte Uiterwaal, Isabella van der Griend, Ryan McGaffney, Karolina Bäckman, at the faculty of Architecture, Delft University of Technology (TU-Delft), under the supervision of Henri van Bennekom. AREA-Framework support architects to intervene in the built environment taking as a reference the Doughnut Economics model. The AREA-Framework is at an initial stage, and its categories and subcategories are only qualitative. TU-Delft, the architectural practices Space&Matter and SuperuseStudios, in collaboration with the interdepartmental research group Circular Built Environment Hub (CBEH) and architectural practices from the network of 400 construction companies belonging to the Ex'tax project, the advice from Kate Raworth and the Amsterdam-Donut-Coalitie will further develop the AREA-Framework primarily quantitatively and also qualitatively. TU-Delft, Space&Matter, SuperuseStudios, other architectural practices from the Ex'tax-network will test the framework on different phases of real projects, interdepartmental research and education. The ultimate goal is to develop the framework further, to increase the number of architectural practices successfully implementing the Doughnut Economics in the built environment at a national level. The framework will contribute to positioning the architectural practices concerning Doughnut Economics and the Circular Economy. The project results are firstly an online open-access publication about the further developed Framework to be applied by architects; secondly, the preparation and submission of a follow-up research proposal about the extended development and implementation of the Framework applicable to the built environment by all the Ex'tax construction sector companies.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.