Dienst van SURF
© 2025 SURF
NL samenvatting: In dit verkennend onderzoek werden social engineering-aanvallen bestudeerd, vooral de aanvallen die mislukten, om organisaties te helpen weerbaarder te worden. Fysieke, telefonische en digitale aanvallen werden uitgevoerd met behulp van een script volgens de 'social engineering-cyclus'. We gebruikten het COM-B model van gedragsverandering, verfijnd door het Theoretical Domains Framework, om door middel van een enquête te onderzoeken hoe Capability, Motivational en vooral Opportunity factoren helpen om de weerbaarheid van organisaties tegen social engineering-aanvallen te vergroten. Binnen Opportunity leek sociale invloed van extra belang. Werknemers die in kleine ondernemingen werken (<50 werknemers) waren succesvoller in het weerstaan van digitale social engineering-aanvallen dan werknemers die in grotere organisaties werken. Een verklaring hiervoor zou een grotere mate van sociale controle kunnen zijn; deze medewerkers werken dicht bij elkaar, waardoor ze in staat zijn om onregelmatigheden te controleren of elkaar te waarschuwen. Ook het installeren van een gespreksprotocol over hoe om te gaan met buitenstaanders was een maatregel die door alle organisaties werd genomen waar telefonische aanvallen faalden. Daarom is het moeilijker voor een buitenstaander om toegang te krijgen tot de organisatie door middel van social engineering. Dit artikel eindigt met een discussie en enkele aanbevelingen voor organisaties, bijvoorbeeld met betrekking tot het ontwerp van de werkomgeving, om hun weerbaarheid tegen social engineering-aanvallen te vergroten. ENG abstract: In this explorative research social engineering attacks were studied, especially the ones that failed, in order to help organisations to become more resilient. Physical, phone and digital attacks were carried out using a script following the ‘social engineering cycle’. We used the COM-B model of behaviour change, refined by the Theoretical Domains Framework, to examine by means of a survey how Capability, Motivational and foremost Opportunity factors help to increase resilience of organisations against social engineering attacks. Within Opportunity, social influence seemed of extra importance. Employees who work in small sized enterprises (<50 employees) were more successful in withstanding digital social engineering attacks than employees who work in larger organisations. An explanation for this could be a greater amount of social control; these employees work in close proximity to one another, so they are able to check irregularities or warn each other. Also, having a conversation protocol installed on how to interact with outsiders, was a measure taken by all organisations where attacks by telephone failed. Therefore, it is more difficult for an outsider to get access to the organisation by means of social engineering. This paper ends with a discussion and some recommendations for organisations, e.g. the design of the work environment, to help increase their resilience against social engineering attacks. https://openaccess.cms-conferences.org/publications/book/978-1-958651-29-2/article/978-1-958651-29-2_8 DOI: 10.54941/ahfe1002203
In the current discourses on sustainable development, one can discern two main intellectual cultures: an analytic one focusing on measuring problems and prioritizing measures, (Life Cycle Analysis (LCA), Mass Flow Analysis (MFA), etc.) and; a policy/management one, focusing on long term change, change incentives, and stakeholder management (Transitions/niches, Environmental economy, Cleaner production). These cultures do not often interact and interactions are often negative. However, both cultures are required to work towards sustainability solutions: problems should be thoroughly identified and quantified, options for large change should be guideposts for action, and incentives should be created, stakeholders should be enabled to participate and their values and interests should be included in the change process. The paper deals especially with engineering education. Successful technological change processes should be supported by engineers who have acquired strategic competences. An important barrier towards training academics with these competences is the strong disciplinarism of higher education. Raising engineering students in strong disciplinary paradigms is probably responsible for their diminishing public engagement over the course of their studies. Strategic competences are crucial to keep students engaged and train them to implement long term sustainable solutions.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
In the past decade additive manufacturing has gained an incredible traction in the construction industry. The field of 3D concrete printing (3DCP) has advanced significantly, leading to commercially viable housing projects. The use of concrete represents a challenge because of its environmental impact and CO2 footprint. Due to its material properties, structural capacity and ability to take on complex geometries with relative ease, concrete is and will remain for the foreseeable future a key construction material. The framework required for casting concrete, in particular non-orthogonal geometries, is in itself wasteful, not reusable, contributing to its negative environmental impact. Non-standard, complex geometries generally require the use of moulds and subsystems to be produced, leading to wasteful, material-intense manufacturing processes, with high carbon footprints. This research proposal bypasses the use of wasteful scaffolding and moulds, by exploring 3D printing with concrete on reusable substructures made of sand, clay or aggregate. Optimised material depositing strategies for 3DCP will be explored, by making use of algorithmic structural optimisation. This way, material is deposited only where structurally needed, allowing for further reduction of raw-material use. This collaboration between Neutelings Riedijk Architects, Vertico and the Architectural Design and Engineering Chair of the TU Eindhoven, investigates full-scale additive manufacturing of spatially complex 3D-concrete printed components using multi-material support systems (clay, sand and aggregates). These materials can be easily shaped multiple times into substrates with complex geometries, without generating material waste. The 3D concrete printed full-scale prototypes can be used as lightweight façade elements, screens or spatial dividers. To generate waterproof components, the cavities of the extruded lattices can be filled up with lightweight clay or cement. This process allows for the exploration of new aesthetic, creative and circular possibilities, complex geometries and new material expressions in architecture and construction, while reducing raw-material use and waste.