Dienst van SURF
© 2025 SURF
The municipality of Apeldoorn had polled the interest among its private home-owners to turn their homes energy neutral. Based on the enthusiastic response, Apeldoorn saw the launch of the Energy Apeldoorn (#ENEXAP) in 2011. Its goal was to convert to it technically and financially possible for privately owned homes to be refurbished and to energy neutral, taking the residential needs and wishes from occupants as the starting point. The project was called an Expedition, because although the goal was clear, the road to get there wasn’t. The Expedition team comprised businesses, civil-society organisations, the local university of applied sciences, the municipality of Apeldoorn, and of course, residents in a central role. The project was supported by Platform31, as part of the Dutch government’s Energy Leap programme. The #ENEXAP involved 38 homes, spread out through Apeldoorn and surrounding villages. Even though the houses were very diverse, the group of residents was quite similar: mostly middle- aged, affluent people who highly value the environment and sustainability. An important aspect of the project was the independent and active role residents played. In collaboration with businesses and professionals, through meetings, excursions, workshops and by filling in a step- by-step plan on the website, the residents gathered information about their personal situation, the energy performance of their home and the possibilities available for them to save and generate energy themselves. Businesses were encouraged to develop an integrated approach for home-owners, and consortia were set up by businesses to develop the strategy, products and services needed to meet this demand. On top of making minimal twenty from the thirty-eight houses in the project energy neutral, the ultimate goal was to boost the local demand for energy- neutral refurbishment and encourage an appropriate supply of services, opening up the (local) market for energy neutral refurbishment. This paper will reflect on the outcomes of this collective in the period 2011-2015.
Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
This book presents the results of the international research project CODALoop: Community Data Loop for Energy Conscious Lifestyles. It dissects the energy practices that make urban households demanding energy in their daily life and reveals the pathway towards reducing this energy demand.To unpack energy practices, the authors of this volume move away from efficiency problems studying the interaction between human and new technologies. Instead, they use a repertoire of different analytical instruments to study how interaction between humans, and between humans and data, change the social norms that shape energy needs.The volume offers a synthesis of a cross-disciplinary study of energy reduction carried out in three different countries through multiple methodological approaches. The project at the source of the book was funded under the Joint Program Initiative 'Urban Europe' and the ERA-net framework.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.