Dienst van SURF
© 2025 SURF
Symposium ESWRA - ECSWR 2016: empirical ethics in social work. Objective: ethical aspects of social work (esp. at home) Structure: cooperation of the research group of UAS Utrecht Netherlands with six regional welfare organizations Method: practice based ethics research Focus on professional practice: learning from moral experiences in frontline practice (cf. Van Doorn, 2008) Hybrid approach: combining theoretical resources and professional practice (cf. Banks & Gallagher, 2009) Mixed methods: desk research, interviews, best practice units (BPU), development of ethical tools
Three empirical models were used to fit the formation of acrylamide in crisps of three different cold-sweetened potato genotypes, fried under the same experimental conditions. Statistical methods were used to compare the performance of the models, with the "Logistic-Exponential" model performing the best. The obtained model parameters for the formation of acrylamide showed improvement in precision compared to an earlier study, the precision of the parameter estimates for the degradation of acrylamide was still problematic. Nevertheless, the predictive capacity of the "Logistic-Exponential" model was tested, as this model showed a strong correlation between parameter a and the reducing sugar content of the raw potato. The predictions from this model for the formation of acrylamide in potato crisps were close to earlier reported experimental values. Therefore, the use of the "Logistic-Exponential" model as a tool to predict acrylamide in potato crisps seems promising and should be developed further.
Digitalization is the core component of future development in the 4.0 industrial era. It represents a powerful mechanism for enhancing the sustainable competitiveness of economies worldwide. Diverse triggering effects shape future digitalization trends. Thus, the main research goal in this study is to use sustainable competitiveness pillars (such as social, economic, environmental and energy) to evaluate international digitalization development. The proposed empirical model generates comprehensive knowledge of the sustainable competitiveness-digitalization nexus. For that purpose, a nonlinear regression has been applied on gathered annual data that consist of 33 European countries, ranging from 2010 to 2016. The dataset has been deployed using Bernoulli’s binominal distribution to derive training and testing samples and the entire analysis has been adjusted in that context. The empirical findings of artificial neural networks (ANN) suggest strong effects of the economic and energy use indicators on the digitalization progress. Nonlinear regression and ANN model summary report valuable results with a high degree of coefficient of determination (R2>0.9 for all models). Research findings state that the digitalization process is multidimensional and cannot be evaluated as an isolated phenomenon without incorporating other relevant factors that emerge in the environment. Indicators report the consumption of electrical energy in industry and households and GDP per capita to achieve the strongest effect.
MULTIFILE