Dienst van SURF
© 2025 SURF
To accelerate differentiation between Staphylococcus aureus and Coagulase Negative Staphylococci (CNS), this study aimed to compare six different DNA extraction methods from 2 commonly used blood culture materials, i.e. BACTEC and Bact/ALERT. Furthermore, we analyzed the effect of reduced blood culture times for detection of Staphylococci directly from blood culture material. A real-time PCR duplex assay was used to compare 6 different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with MRSA. Bacterial DNA was isolated with: automated extractor EasyMAG (3 protocols), automated extractor MagNA Pure LC (LC Microbiology Kit MGrade), a manual kit MolYsis Plus, and a combination between MolYsis Plus and the EasyMAG. The most optimal isolation method was used to evaluate reduced bacterial culture times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the EasyMAG resulted in the most sensitive detection of S.aureus, with a detection limit of 10 CFU/ml, in Bact/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S.aureus load of 1 CFU/ml blood can be detected after 5 hours of culture in Bact/ALERT3D by combining the sensitive isolation method and the tuf LightCycler assay.
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.
Five methods were compared to determine the best technique for accurate identification of coagulase-negative staphylococci (CoNS) (n=142 strains). MALDI-TOF MS showed the best results for rapid and accurate CoNS differentiation (correct identity in 99.3%). An alternative to this approach could be Vitek2 combined with partial tuf gene sequencing.
Routine neuropathology diagnostic methods are limited to histological staining techniques or directed PCR for pathogen detection and microbial cultures of brain abscesses are negative in one-third of the cases. Fortunately, due to improvements in technology, metagenomic sequencing of a conserved bacterial gene could provide an alternative diagnostic method. For histopathological work up, formalin-fixed paraffin-embedded (FFPE) tissue with highly degraded nucleic acids is the only material being available. Innovative amplicon-specific next-generation sequencing (NGS) technology has the capability to identify pathogens based on the degraded DNA within a few hours. This approach significantly accelerates diagnostics and is particularly valuable to identify challenging pathogens. This ensures optimal treatment for the patient, minimizing unnecessary health damage. Within this project, highly conserved primers in a universal PCR will be used, followed by determining the nucleotide sequence. Based on the obtained data, it is then precisely determined which microorganism(s) is/are responsible for the infection, even in cases of co-infection with multiple pathogens. This project will focus to answer the following research question; how can a new form of rapid molecular diagnostics contribute to the identification of microbial pathogens in CNS infections? The SME partner Molecular Biology Systems B.V. (MBS) develops and sells equipment for extremely rapid execution of the commonly used PCR. In this project, the lectorate Analysis Techniques in the Life Sciences (Avans) will, in collaboration with MBS, Westerdijk Institute (WI-KNAW) and the Institute of Neuropathology (Münster, DE) establish a new molecular approach for fast diagnosis within CNS infections using this MBS technology. This enables the monitoring of infectious diseases in a fast and user-friendly manner, resulting in an improved treatment plan.
Bijna alle klinische samples bevatten genetisch materiaal van het infectieus agentia, waardoor sequencing een aantrekkelijke benadering is voor de detectie en identificatie van pathogenen. Deze nieuwe vorm van moleculaire diagnostiek omzeilt het lange proces van traditionele, op cultuur gebaseerde analyses. Innovatieve amplicon specifieke next generation sequencing (NGS) technologie heeft de mogelijkheid de ziekteverwekkers op basis van DNA binnen enkele uren te identificeren. Deze aanpak versnelt daarmee de diagnostiek enorm en is met name een waardevolle aanvulling bij niet- of moeilijk kweekbare pathogenen. Dit zorgt ervoor dat de patiënt optimaal behandeld kan worden en er geen onnodige gezondheidsschade optreedt. Binnen dit project zal gebruik worden gemaakt van sterk geconserveerde primers in een universele PCR, gevolgd door het bepalen van de nucleotiden volgorde. Aan de hand van de verkregen data wordt vervolgens exact bepaald welk(e) micro-organisme(n) verantwoordelijk is/zijn voor de infectie, zelfs wanneer er co-infectie van meerdere pathogenen is opgetreden. MKB partner Molecular Biology Systems B.V. (MBS) ontwikkelen en verkopen apparatuur waarmee de veelgebruikte PCR extreem snel kan worden uitgevoerd. In samenwerking met MBS, MUMC+ en het lectoraat Analyse Technieken in de Life Sciences wordt binnen dit project een nieuwe moleculaire aanpak opgezet middels de MBS technologie, waarbij op een snelle en gebruiksvriendelijke manier infectieziekten gemonitord kunnen worden wat resulteert in een verbeterd behandelplan. Alle partners kunnen direct profiteren van de resultaten van dit onderzoek. Zo is er directe vertaling van resultaten naar een nieuwe werkwijze voor MUMC+, zal Avans de resultaten direct integreren in haar onderwijs en zal MBS deze snelle innovatieve werkmethode verder door ontwikkelen in de medische diagnostiek.