Voor hun ontwikkeling is het belangrijk dat kinderen greep krijgen op de moderne digitale leefwereld. Deze wereld heeft veel kenmerken van een black box. Mindtools zijn computertoepassingen die kunnen helpen de black box te openen. Ze stimuleren kinderen actief reflecterend te leren met en over digitale technologie. Een Robotic Direct Manipulation Environment (DME) is een mindtool waarmee leerlingen een werkende robot maken en al doende denkvaardigheden activeren om conceptuele kennis te ontwikkelen. De leerlingen krijgen en realistischer beeld van de plaats en mogelijkheden van moderne technologie. Terwijl ze probleemtaken oplossen activeren ze allerlei denkvaardigheden en ontwikkelen conceptuele kennis.
Voor hun ontwikkeling is het belangrijk dat kinderen greep krijgen op de moderne digitale leefwereld. Deze wereld heeft veel kenmerken van een black box. Mindtools zijn computertoepassingen die kunnen helpen de black box te openen. Ze stimuleren kinderen actief reflecterend te leren met en over digitale technologie. Een Robotic Direct Manipulation Environment (DME) is een mindtool waarmee leerlingen een werkende robot maken en al doende denkvaardigheden activeren om conceptuele kennis te ontwikkelen. De leerlingen krijgen en realistischer beeld van de plaats en mogelijkheden van moderne technologie. Terwijl ze probleemtaken oplossen activeren ze allerlei denkvaardigheden en ontwikkelen conceptuele kennis.
BackgroundPromoting physical activity (PA) in patients during and/or after an inpatient stay appears important but challenging. Interventions using activity trackers seem promising to increase PA and enhance recovery of physical functioning.ObjectiveTo review the effectiveness of physical activity interventions using activity trackers on improving PA and physical functioning, compared to usual care in patients during and/or after inpatient care. In addition, it was determined whether the following intervention characteristics increase the effectiveness of these interventions: the number of behaviour change techniques (BCTs) used, the use of a theoretical model or the addition of coaching by a health professional.DesignSystematic review and meta-analysis.Data SourcesPubMed, EMBASE, Cinahl, SportDiscus and Web of Science databases were searched in March 2020 and updated in March 2021.Eligibility criteria for selecting studiesRandomized controlled trials (RCTs) including interventions using activity trackers and feedback on PA in adult patients during, or less than 3 months after, hospitalization or inpatient rehabilitation.MethodsFollowing database search and title and abstract screening, articles were screened on full text for eligibility and then assessed for risk of bias by using the Physiotherapy Evidence Database (PEDro) scale. Meta-analyses, including subgroup analysis on intervention characteristics, were conducted for the outcomes PA and physical functioning.ResultsOverall, 21 RCTs totalling 2355 patients were included. The trials covered a variety of clinical areas. There was considerable heterogeneity between studies. For the 13 studies that measured PA as an outcome variable(N = 1435), a significant small positive effect in favour of the intervention was found (standardized mean difference (SMD) = 0.34; 95%CI 0.12–0.56). For the 13 studies that measured physical functioning as an outcome variable (N = 1415) no significant effect was found (SMD = 0.09; 95%CI -0.02 - 0.19). Effectiveness on PA seems to improve by providing the intervention both during and after the inpatient period and by using a theoretical model, multiple BCTs and coaching by a health professional.ConclusionInterventions using activity trackers during and/or after inpatient care can be effective in increasing the level of PA. However, these improvements did not necessarily translate into improvements in physical functioning. Several intervention characteristics were found to increase the effectiveness of PA interventions.Trial registrationRegistered in PROSPERO (CRD42020175977) on March 23th, 2020.
MULTIFILE
Organs-on-chips (OoCs) worden steeds belangrijker voor geneesmiddelonderzoek. Het kweken van miniatuurorganen in microfluïdische chips creëert een systeem waarmee geneesmiddelonderzoekers efficiënt geneesmiddelen kunnen testen. OoCs kunnen in de toekomst een belangrijk instrument voor personalized medicine worden: door het kweken van patiëntmateriaal in OoCs kan dan worden bepaald welke interventies voor specifieke patiënten werken en veilig zijn. In de huidige praktijk worden cellulaire veranderingen in OoCs na blootstelling aan een geneesmiddel doorgaans gevolgd met visualisatietechnieken, waarmee alleen effecten van geneesmiddelen kunnen worden waargenomen. Voor bepaling van de voor geneesmiddelonderzoek cruciale parameters absorptie, distributie, metabolisme en excretie (ADME) is het noodzakelijk om de concentraties van geneesmiddelen en hun relevante metabolieten te meten. Het doel van AC/OC is dit mogelijk te maken door het ontwikkelen van analytisch-chemische technieken, gebaseerd op vloeistofchromatografie gekoppeld met massaspectrometrie (LC-MS). Hiermee kunnen ontwikkelaars van OoCs (de eindgebruikers van AC/OC) de voordelen van hun producten voor geneesmiddelonderzoek beter onderbouwen. Dit project bouwt voort op twee KIEM-projecten, waarin enkele veelbelovende analytisch-chemische technieken succesvol zijn verkend. In AC/OC zullen wij: 1. analytisch-chemische methodes ontwikkelen die geschikt zijn om een breed scala aan geneesmiddelen en metabolieten te bepalen in meerdere types OoCs; 2. deze methodes verbeteren, zodat de analyse geautomatiseerd, sneller en gevoeliger wordt; 3. de potentie van deze methodes voor geneesmiddelonderzoek met OoCs demonsteren door ze toe te passen op enkele praktijkvraagstukken. Het OoC-veld ontwikkelt zich razendsnel en Nederland (georganiseerd binnen OoC-consortium hDMT) speelt daarin een belangrijke rol. AC/OC verbindt kennis en expertise op het gebied van analytische chemie, OoCs, celkweek en geneesmiddelonderzoek. Hierdoor kan AC/OC een bijdrage leveren aan sneller en betrouwbaarder geneesmiddelonderzoek. Met de ontwikkeling van een minor ‘OoC-Technology’, waarin we de onderzoeksresultaten vertalen naar onderwijs, spelen we in op de behoefte aan professionals met kennis, ervaring en belangstelling op het gebied van OoCs.
Het plaatsen en onderhouden van fysieke inrichtingselementen in de openbare ruimte is kostbaar. Meer efficiënt gebruik van het bestaande aanbod in de fysieke omgeving door passend beweegstimuleringsaanbod is wenselijk en efficiënter gebruik kan bijdragen aan het verminderen van bewegingsarmoede. In ‘Changing Views’ staan drie onderzoeksvragen centraal: 1) Kunnen kinderen met behulp van technologische ondersteuning worden verleid om gebruik te maken van andere locaties dan zij gewend zijn? 2) Kan de perceptie en zienswijze van kinderen op de beweegvriendelijkheid van de omgeving worden beïnvloed middels gerichte blootstelling aan inrichtingselementen via de technologische applicatie ‘missiemaster’? 3) Hoe kan het gebruik van de openbare ruimte door kinderen worden geoptimaliseerd en kunnen kinderen die van nature minder beweegdrang hebben, meer gestimuleerd worden om te bewegen door hen actief te betrekken in de ontwikkeling van beweegstimuleringsaanbod? Onderzoeksvraag 1 wordt onderzocht middels een kleinschalig experiment door het gebruik van missiemaster, waarmee kinderen via een GPS-route door hun wijk worden ‘rondgeleid’ (werkpakket 1). Op basis van een herhaalde meting bij basisschoolleerlingen en de evaluatie van app-gegevens wordt het potentieel van deze technologie onderzocht. Hierbij wordt onderzocht of de perceptie van beweegvriendelijkheid van de omgeving kan worden beïnvloed en of door veranderde blootstelling aan omgevingsmogelijkheden nieuwe sociale interacties ontstaan. De kwantitatieve meting bij leerlingen vormt tevens de basis voor de selectie van een specifieke doelgroepen leerlingen voor deelname aan werkpakket 2 waarin middels een participatief actie-onderzoek passend beweegstimuleringsaanbod wordt ontwikkeld. Via meerdere iteraties in het ontwikkelproces en met behulp van een nieuw te ontwikkelen ‘efficiëntiegraadmeter’ voor buurtsportcoaches wordt in werkpakket 3 de tweede onderzoeksvraag beantwoord. In een slotsymposium worden alle projectresultaten (inzichten en ontwikkelde producten) gedeeld. Alle ontwikkelde producten worden duurzaam en vrij beschikbaar gesteld via een online platform, www.beweegvriendelijkebuurt.nl.
Dit project richt zich op duurzame extractie en hergebruik van gadolinium (Gd), een zeldzaam aardmetaal dat onder andere wordt gebruikt in computerchips, maar ook in MRI-contrastmiddelen in de medische praktijk. Omdat waterzuiveringsinstallaties deze contrastmiddelen niet kunnen terugwinnen komt Gd via urine in het milieu terecht. De productie van Gd genereert grote hoeveelheden toxisch afval en CO2. Voor de verduurzaming van de chemische sector is het daarom essentieel nieuwe methoden te ontwikkelen om Gd te recyclen en te scheiden. Ons innovatieve proces maakt gebruik van het eiwit Lanmodulin, dat specifiek Gd bindt. Door Lanmodulin op een vaste drager te immobiliseren, kan het herbruikbaar worden ingezet om Gd direct uit urine te filteren. Na binding wordt Gd door een eenvoudige chemische behandeling losgekoppeld van het eiwit en gerecycled. Jaarlijks wordt in Nederland meer dan 500 kg Gd gebruikt in MRI-contrastvloeistoffen. Door Gd uit urine te filteren, kunnen ziekenhuizen hun milieubelasting en afvalproductie verminderen. Het teruggewonnen Gd kan vervolgens hergebruikt worden in verschillende toepassingen buiten het ziekenhuis. Gd extractie bespaart kosten en vermindert de afhankelijkheid van zeldzame aardmetalen van buitenlandse producenten. Het project is geïnspireerd door de Green Deal Duurzame Zorg, die streeft naar halvering van het grondstofverbruik in de zorg in 2030. Het doel van ons onderzoek is om een effectief en duurzaam Gd terugwinning proces te ontwikkelen voor praktijkgebruik. Dit nieuwe, schaalbare proces vormt een milieuvriendelijk systeem dat Gd extraheert voor hergebruik in de chemische industrie. De technologie biedt ook mogelijkheden om andere waardevolle zeldzame aardmetalen uit afvalstromen te winnen, wat bijdraagt aan een circulaire economie. Door recycling van kritieke grondstoffen verlagen we de milieu-impact van de medische sector en dragen we bij aan een duurzamere toekomst.