Dienst van SURF
© 2025 SURF
Traces of condom lubricants in fingerprints can be valuable information in cases of sexual assault. Ideally, not only confirmation of the presence of the condom but also determination of the type of condom brand used can be retrieved. Previous studies have shown to be able to retrieve information about the condom brand and type from fingerprints containing lubricants using various analytical techniques. However, in practice fingerprints often appear latent and need to be detected first, which is often achieved by cyanoacrylate fuming. In this study, we developed a desorption electrospray ionization mass spectrometry (DESI-MS) method which, combined with principal component analysis and linear discriminant analysis (PCA-LDA), allows for high accuracy classification of condom brands and types from fingerprints containing condom lubricant traces. The developed method is compatible with cyanoacrylate (CA) fuming. We collected and analyzed a representative dataset for the Netherlands comprising 32 different condoms. Distinctive lubricant components such as polyethylene glycol (PEG), polydimethylsiloxane (PDMS), octoxynol-9 and nonoxynol-9 were readily detected using the DESI-MS method. Based on the analysis of lubricant spots, a 99.0% classification accuracy was achieved. When analyzing lubricant containing fingerprints, an overall accuracy of 90.9% was obtained. Full chemical images could be generated from fingerprints, showing the distribution of lubricant components such as PEG and PDMS throughout the fingerprint, while still allowing for classification. The developed method shows potential for the development of DESI-MS based analyses of CA treated exogenous compounds from fingerprints for use in forensic science.
MULTIFILE
Fingerprints are widely used in forensic science for individualization purposes. However, not every fingermark found at a crime scene is suitable for comparison, for instance due to distortion of ridge detail, or when the reference fingerprint is not in the database. To still retrieve information from these fingermarks, several studies have been initiated into the chemical composition of fingermarks, which is believed to be influenced by several donor traits. Yet, it is still unclear what donor information can be retrieved from the composition of one's fingerprint, mainly because of limited sample sizes and the focus on analytical method development. It this paper, we analyzed the chemical composition of 1852 fingerprints, donated by 463 donors during the Dutch music festival Lowlands in 2016. In a targeted approach we compared amino acid and lipid profiles obtained from different types of fingerprints. We found a large inter-variability in both amino acid and lipid content, and significant differences in L-(iso)leucine, L-phenylalanine and palmitoleic acid levels between male and female donors. In an untargeted approach we used full-scan MS data to generate classification models to predict gender (77.9% accuracy) and smoking habit (90.4% accuracy) of fingerprint donors. In the latter, putatively, nicotine and cotinine are used as predictors.
MULTIFILE
Social media has become a prolific tool for companies to build their brands. An effective way to interact with stakeholders on social media has been the relatively new discipline of ‘influencer marketing’. Here, companies engage social media stars to use their large fan-base to promote products and services on their brand’s behalf. While related to the promotional tactic of word-of-mouth marketing, influencer marketing lacks a theoretical foundation in the academic discourse. This paper aims to fill this gap by offering a conceptualisation to operationalize the new discipline in practice. The conceptualisation proposes brand owners a methodology to choose the right influencers for their brands and guides influencers to perform optimally with their fan base. Lastly, a consumer perspective is taken to the discussion to emphasize the relevance of influencer marketing in the consumer purchase decision-making process.
LINK