Dienst van SURF
© 2025 SURF
This study explores how journalists in highspeed newsrooms gather information, how gathering activities are temporally structured and how reliability manifests itself in information-gathering activities.
Currently, promising new tools are under development that will enable crime scene investigators to analyze fingerprints or DNA-traces at the crime scene. While these technologies could help to find a perpetrator early in the investigation, they may also strengthen confirmation bias when an incorrect scenario directs the investigation this early. In this study, 40 experienced Crime scene investigators (CSIs) investigated a mock crime scene to study the influence of rapid identification technologies on the investigation. This initial study shows that receiving identification information during the investigation results in more accurate scenarios. CSIs in general are not as much reconstructing the event that took place, but rather have a “who done it routine.” Their focus is on finding perpetrator traces with the risk of missing important information at the start of the investigation. Furthermore, identification information was mostly integrated in their final scenarios when the results of the analysis matched their expectations. CSIs have the tendency to look for confirmation, but the technology has no influence on this tendency. CSIs should be made aware of the risks of this strategy as important offender information could be missed or innocent people could be wrongfully accused.
More than 80 % of all information in an organization is unstructured, created by knowledge workers engaged in peer-to-peer networks of expertise to share knowledge across organizational boundaries. Enterprise Information Systems (EIS) do not integrate unstructured information. At best, they integrate links to unstructured information connected with structured information in their databases. The amount of unstructured information is rising quickly. Ensuring the quality of this unstructured information is difficult. It is often inaccessible, unavailable, incomplete, irrelevant, untimely, inaccurate, and/or incomprehensible. It becomes problematic to reconstruct what has happened in organizations. When used for organizational policies, decisions, products, actions and transactions, structured and unstructured information are called records. They are an entity of information, consisting out of an information object (structured or unstructured) and its metadata. They are important for organizational accountability and business process performance, for without them reconstruction of past happenings and meaningful production become an impossibility. Organization-wide management of records is not a common functionality for EIS, resulting in [1] a fragmentation in the management of records, where structured and unstructured information objects are stored in a variety of systems, unconnected with their metadata; [2] a fragmentation in metadata management, leading to a loss of contextuality because metadata are separated from their information objects; and [3] a declining quality or records, because their provenance, integrity, and preservation are in peril. Organizational accountability is based on records and their context to reconstruct the past. Because records are not controlled by EIS, they can only marginally be used for accountability. The challenge for organizational accountability is to generate trusted records, fixed and contextual information objects inseparately linked with metadata that capture context to regain evidential value and to allow for the reconstruction of the past. The research question of this paper is how to capture records and their context within EIS to regain the evidential value of records to allow for a more robust organizational accountability. To find an answer, we need to pay attention to the concept of context, on how to capture context in metadata, and how to embed and manage records in EIS.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
The production, use, disposal and recovery of packaging not only generates massive volumes of waste, it also consumes raw materials, water and energy (Fitzpatrick et al. 2012). Simultaneously, consumers have shown an increasing interest in products incorporating sustainable and social attributes (Kletzan et al., 2006). As a result, environmentally friendly packaging, also called ecofriendly or sustainable packaging, has become mainstream. In this context, packaging is more than just ensuring the product's protection and easing transportation, it is also a communicative tool (Palmer, 2000) and it becomes associated with multiple drivers of the purchasing process. Consequently, companies face pressure to innovate responding to consumer demands, and focusing on sustainable solutions that reduce harmful materials and favour green alternatives for both, the product and the packaging. Although the above has triggered research on consumer choice for sustainable products and alternatives on sustainable packaging, the relation between sustainable packaging and consumer behaviour remains underexplored. This research unpacks this relationship, i.e., empirically verifies which dimensions (recyclability, biodegradability, reusability) of sustainable packaging are perceived and valued by consumers. Put differently, this research investigates consumer behaviour towards the functions of sustainable packaging in terms of product protection, convenience, reliability of information and promotion, and scrutinises the perceived credibility of the associated ethical responsibility claims. It aims to identify those packaging materials and/or sustainability characteristics perceived as more sustainable by consumers as well as the factors influencing actual consumer choice towards sustainable packaged products. We aim to gain more insights in the perceptual frame that different types of consumers apply when exposed to sustainable packaging. To this end, we will make use of revealed preference methods to measure consumer valuations of sustainable packaged products. This game-theoretic approach should provide a more complete depiction of consumers' perceptions and preferences.