Dienst van SURF
© 2025 SURF
This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with several techniques for object recognition and tracking, and with the guidance of a robot movement by means of computer vision. These experiments involve detection of coloured objects, object detection based on specific features, template matching with automatically generated templates, and interaction of a robot with a physical object that is viewed by a camera mounted on the robot.
This article deals with automatic object recognition. The goal is that in a certain grey-level image, possibly containing many objects, a certain object can be recognized and localized, based upon its shape. The assumption is that this shape has no special characteristics on which a dedicated recognition algorithm can be based (e.g. if we know that the object is circular, we could use a Hough transform or if we know that it is the only object with grey level 90, we can simply use thresholding). Our starting point is an object with a random shape. The image in which the object is searched is called the Search Image. A well known technique for this is Template Matching, which is described first.
Growing research in sign language recognition, generation, and translation AI has been accompanied by calls for ethical development of such technologies. While these works are crucial to helping individual researchers do better, there is a notable lack of discussion of systemic biases or analysis of rhetoric that shape the research questions and methods in the field, especially as it remains dominated by hearing non-signing researchers. Therefore, we conduct a systematic review of 101 recent papers in sign language AI. Our analysis identifies significant biases in the current state of sign language AI research, including an overfocus on addressing perceived communication barriers, a lack of use of representative datasets, use of annotations lacking linguistic foundations, and development of methods that build on flawed models. We take the position that the field lacks meaningful input from Deaf stakeholders, and is instead driven by what decisions are the most convenient or perceived as important to hearing researchers. We end with a call to action: the field must make space for Deaf researchers to lead the conversation in sign language AI.
LINK