Dienst van SURF
© 2025 SURF
Participating in physical activity (PA) is beneficial for adolescents' physical and mental development. Therefore, many studies have been conducted to design and evaluate interactive interventions to facilitate adolescents' PA. Despite the knowledge produced by this large number of studies, the field of Human-Computer Interaction (HCI) still lacks a comprehensive set of guidelines to guide our design processes, help us make informed design decisions, as well as provide niche for innovation. This paper reports a systematic literature review of studies on technology-supported interventions in adolescents' PA. We reviewed 25 design related studies in HCI over the past 10 years, analyzing 1) the process phases of design practice, 2) the design requirements and related design decisions, and 3) how these phases and requirements are internally related to each other and what are their influence on design value. Our findings suggest four design phases with seven design requirements and its corresponding design decisions emerged in the process of design. Furthermore, we outline a framework to demonstrate the internal relations of design requirements. We generalize opportunities and challenges for supporting the aforementioned design decisions making, and implementing the findings for future design and research on technology-supported adolescents' PA. https://doi.org/10.1145/3311927.3323130
Author supplied from the article: ABSTRACT Increasing global competition in manufacturing technology puts pressure on lead times for product design and production engineering. By the application of effective methods for systems engineering (engineering design), the development risks can be addressed in a structured manner to minimise chances of delay and guarantee timely market introduction. Concurrent design has proven to be effective in markets for high tech systems; the product and its manufacturing means are simultaneously developed starting at the product definition. Unfortunately, not many systems engineering methodologies do support development well in the early stage of the project where proof of concept is still under investigation. The number of practically applicable tools in this stage is even worse. Industry could use a systems engineering method that combines a structured risk approach, concurrent development, and especially enables application in the early stage of product and equipment design. The belief is that Axiomatic Design can provide with a solid foundation for this need. This paper proposes a ‘Constituent Roadmap of Product Design’, based on the axiomatic design methodology. It offers easy access to a broad range of users, experienced and inexperienced. First, it has the ability to evaluate if knowledge application to a design is relevant and complete. Secondly, it offers more detail within the satisfaction interval of the independence axiom. The constituent roadmap is based on recent work that discloses an analysis on information in axiomatic design. The analysis enables better differentiation on project progression in the conceptual stage of design. The constituent roadmap integrates axiomatic design and the methods that harmonise with it. Hence, it does not jeopardise the effectiveness of the methodology. An important feature is the check matrix, a low threshold interface that unlocks the methodology to a larger audience. (Source - PDF presented at ASME IMECE (International Mechanical Engineering Congress and Exposition