Dienst van SURF
© 2025 SURF
Computational thinking (CT) skills are crucial for every modern profession in which large amounts of data are processed. In K-12 curricula, CT skills are often taught in separate programming courses. However, without specific instructions, CT skills are not automatically transferred to other domains in the curriculum when they are developed while learning to program in a separate programming course. In modern professions, CT is often applied in the context of a specific domain. Therefore, learning CT skills in other domains, as opposed to computer science, could be of great value. CT and domain-specific subjects can be combined in different ways. In the CT literature, a distinction can be made among CT applications that substitute, augment, modify or redefine the original subject. On the substitute level, CT replaces exercises but CT is not necessary for reaching the learning outcomes. On the redefining level, CT changes the questions that can be posed within the subject, and learning objectives and assessment are integrated. In this short paper, we present examples of how CT and history, mathematics, biology and language subjects can be combined at all four levels. These examples and the framework on which they are based provide a guideline for design-based research on CT and subject integration.
Growing volumes of wood are being used in construction, interior architecture, and product design, resulting in increasing amounts of wood waste. Using this waste is challenging, because it is too labor-intensive to process large volumes of uneven wood pieces that vary in geometry, quality, and origin. The project “Circular Wood for the Neighborhood” researches how advanced computational design and robotic production approaches can be used to create meaningful applications from waste wood. shifting the perception of circular wood as a simply harvested stream, towards a material with unique aesthetics of its own right. The complexity of the material is suggested to be tackled by switching from the object-oriented design towards designing soft systems. The system developed uses a bottom-up approach where each piece of wood aggregates according to certain parameters and the designed medium is mainly rule-sets and connections. The system is able to produce many options and bring the end-user for a meaningful co-design instead of choosing from the pre-designed options. Material-driven design algorithms were developed, which can be used by designers and end-users to design bespoke products from waste wood. In the first of three case studies, a small furniture item (“coffee table”) was designed from an old door, harvested from a renovation project. For its production, two principle approaches were developed: with or without preprocessing the wood. The principles were tested with an industrial robotic arm and available waste wood. A first prototype was made using the generated aggregation from the system, parametric production processes and robotic fabrication.
Background and Context: In order to fully include learners with visual impairments in early programming education, it is necessary to gain insight into specificities regarding their experience of and approach to abstract computational concepts. Objective: In this study, we use the model of the layers of abstraction to explore how learners with visual impairments approach the computational concept of abstraction, working with the Bee-bot and Blue-bot. Method: Six blind and three low vision learners from the elementary school level were observed while completing programming assignments. Findings: The model of the layers of abstraction, can overall be generalized to learners with visual impairments, who engage in patterns that reflect iterative actions of redesigning and debugging. Especially our blind learners use specific tactile and physical behaviors to engage in these actions. Implications: Ultimately, understanding such specificities can contribute to inclusive tailored educational instruction and support.
MULTIFILE
My research investigates the concept of permacomputing, a blend of the words permaculture and computing, as a potential field of convergence of technology, arts, environmental research and activism, and as a subject of future school curricula in art and design. This concept originated in online subcultures, and is currently restricted to creative coding communities. I study in what way permacomputing principles may be used to redefine how art and design education is taught. More generally, I want to research the potential of permacomputing as a critical, sustainable, and practical alternative to the way digital technology is being taught in art education, where students mostly rely on tools and techniques geared towards maximising productivity and mass consumption. This situation is at odds with goals for sustainable production and consumption. I want to research to what degree the concept of permacomputing can be broadened and applied to critically revised, sustainable ways of making computing part of art and design education and professional practice. This research will be embedded in the design curriculum of Willem de Kooning Academy, focused on redefining the role of artists and designers to contribute to future modes of sustainable organisation and production. It is aligned with Rotterdam University of Applied Sciences sectorplan masters VH, in particular managing and directing sustainable transitions. This research builds upon twenty years of experience in the creative industries. It is an attempt to generalise, consolidate, and structure methods and practices for sustainable art and design production experimented with while I was course director of a master programme at WdKA. Throughout the research I will be exchanging with peers and confirmed interested parties, a.o.: Het Nieuwe Instituut (NL), RUAS Creating 010 kenniscentrum (NL), Bergen Centre for Electronic Arts (NO), Mikrolabs (NO), Varia (NL), Media Arts department at RHU (UK), Media Studies at UvA (NL).