Dienst van SURF
© 2025 SURF
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
This research aims to find relevant evidence on whether there is a link between air capacity management (ACM) optimization and airline operations, also considering the airline business model perspective. The selected research strategy includes a case study based on Paris Charles de Gaulle Airport to measure the impact of ACM optimization variables on airline operations. For the analysis we use historical data which allows us to evaluate to what extent the new schedule obtained from the optimized scenario disrupts airline planned operations. The results of this study indicate that ACM optimization has a substantial impact on airline operations. Moreover, the airlines were categorized according to their business model, so that the results of this study revealed which category was the most affected. In detail, this study revealed that, on the one hand, Full-Service Cost Carriers (FSCCs) were the most impacted and the presented ACM optimization variables had a severe impact on slot allocation (approximately 50% of slots lost), fuel burn accounted as extra flight time in the airspace (approximately 12 min per aircraft) and disrupted operations (approximately between 31% and 39% of the preferred assigned runways were changed). On the other hand, the comparison shows that the implementation of an optimization model for managing the airport capacity, leads to a more balanced usage of runways and saves between 7% and 8% of taxi time (which decreases fuel emission).
MULTIFILE
Introduction The research group Biobased Resources & Energy (BRE) of Avans focusses on recovery of valuable building blocks from low-value solid and liquid residual streams from agriculture, households and industries. For the valorisation of these residual streams, BRE looks into different biological, chemical and mechanical processes. One of the main issues in the utilisation of residual streams is economic feasibility and the recovery of multiple resources from one residual stream. Using membrane technologies in combination with biological, chemical and/or mechanical processes could offer great opportunities. Central Research Question What is the applicability of membrane technologies for valorisation of different residual streams and is it possible to integrate membrane technology in current and new biorefining projects of research group BRE: Set-up In order to reach the goal of this postdoc, 4 research questions will be answered using literature search, experimentation and modelling: 1) What membrane methods are currently (commercially) available to enhance the results of current projects in research group BRE? 2) What are the essential technical parameters for membrane separation and how can these be optimized? 3) What is the economic impact of using membrane technology in recovery of valuable building blocks from residual streams? 4) What are the effects of using membranes instead of or complementary to currently used methods on the sustainability of valorisation of residual streams? Cooperation The postdoc and the research group BRE want to extend the contact and research cooperation with (regional) businesses and (applied) universities and support and facilitate the introduction and further development of membrane technologies in the curriculum of different Avans study programmes. This will be done via internships, minor projects (together with businesses) and development of study material for courses and trainings.
The change to renewable energy demands a drastic transition of the built environment. At the same time, it is extremely complex.There are different energy sources, carriers and measurement units, complicating the estimation of the surfaces needed to accommodate energy production, storage, conversion and transport. A variety of stakeholders is involved, having their own views on the desirable solution of the energy puzzle.Watts2Win increases the level of complexity step by step. All measurements are visualised on a map, based on an existing neighbourhood. All implications, spatial and financial, are based on real data; making it possible to obtain realistic insights into the impact of decisions while enjoying a game.Partner: Giocobis