Dienst van SURF
© 2025 SURF
In the housing market enormous challenges exist for the retrofitting of existing housing in combination with the ambition to realize new environmentally friendly and affordable dwellings. Bio-based building materials offer the possibility to use renewable resources in building and construction. The efficient use of bio-based building materials is desirable due to several potential advantages related to environmental and economic aspects e.g. CO2 fixation and additional value. The potential biodegradability of biomaterials however demands also in-novative solutions to avoid e.g. the use of environmental harmful substances. It is essential to use balanced technological solutions, which consider aspects like service life or technical per-formance as well as environmental aspects. Circular economy and biodiversity also play an im-portant role in these concepts and potential production chains. Other questions arise considering the interaction with other large biomass users e.g. food production. What will be the impact if we use more bio-based building materials with regard to biodiversity and resource availability? Does this create opportunities or risks for the increasing use of bio-based building materials or does intelligent use of biomass in building materials offer the possibility to apply still unused (bio) resources and use them as a carbon sink? Potential routes of intelligent usage of biomass as well as potential risks and disadvantages are highlighted and discussed in relation to resource efficiency and decoupling concept(s).
The urgency for developing a circular economy is growing, and more and more companies and organisations are concerned with the importance of adapting their business to fit a changing economy. However, many analyses on the circular economy are still rather abstract and there is a lack of understanding about what circularity would mean for specific industries. This insufficient insight especially seems to be apparent in the building and construction sector. Besides, the building and construction sector is responsible for a major part of energy use and emissions. To tackle the issue of insufficient insight into the business consequences of circular developments, further research is necessary. Therefore, we propose to collaborate on a research project that aims to provide a more detailed level of analysis. The goal is to identify drivers and barriers to make better use of materials in the building and construction sector. This further research would benefit from an international collaboration between universities of applied sciences and industry from different European countries. An additional benefit of the applied orientation would be the relevance for professional education programmes. The article is published in the proceedings of the conference : http://dx.doi.org/10.4995/CARPE2019.2019.10582 Publisher Editorial Universitat Politècnica de València, 2019 www.lalibreria.upv.es / Ref.: 6523_01_01_01 Creative Commons Atribution-NonCommercial-NonDetivates-4.0 Int.
MULTIFILE
Background and aim ʹ Many countries signed the Paris Agreement to mitigate global average temperature rise. In this context, Dutch government decided to realize a reduction of 50% using resources and raw materials in 2030. This paper explores how practice-based research into facility operations can contribute to this aim. Methods / Methodology ʹ Practice-based research which includes direct observations, desk research, and participatory action research. Results ʹ This explorative research presents principles and suggestions for facility managers and procurement managers on how they can embed sustainable materials management in the organisation and how to take control of waste. The proposed suggestions are derived from practice-based research and presented as topics of attention for facility professionals. Originality ʹ Within education of Dutch universities of applied sciences and daily professional facility practices, the phenomenon of materials management is underexposed. To contribute to the national and international climate objectives, (future) facility professionals need better support to reduce waste. Bachelor students were involved throughout this research. This approach gave refreshing insights into waste at the end of the supply chain (control separation units) that can improve informed decisionmaking at the beginning of the supply chain. Practical or social implications ʹ Facility management professionals have an important role to play in the mitigation of global average temperature rise, because of their leading role in procurement, service operations, and materials management. However, they struggle to find sustainable solutions. This paper seeks to inspire professionals with interventions that have proven effectiveness on the reduction of waste. Type of paper ʹ Short research paper.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
ALE organised an event with Parktheater Eindhoven and LSA-citizens (the Dutch umbrella organisation for active citizens). Five ALE students from the minor Imagineering and business/social innovation took responsibility for concept and actual organisation. On Jan 18th, they were supported by six other group members of the minor as volunteers. An IMEM-team of 5 students gathered materials for a video that can support the follow-up actions of the organisers. The students planned to deliver their final product on February 9th. The theatre will critically assess the result and compare it to the products often realised by students from different schools or even professional ones, like Veldkamp productions. Time will tell whether future opportunities will come up for IMEM. The collaboration of ALE and IMEM students is possible and adding value to the project.More than 180 visitors showed interest in the efforts of 30 national and local citizen initiatives presenting themselves on the market square in the theatre and the diverse speakers during the plenary session. The students created a great atmosphere using the qualities of the physical space and the hospitality of the theatre. Chair of the day, Roland Kleve, kicked off and invited a diverse group of people to the stage: Giel Pastoor, director of the theatre, used the opportunity to share his thoughts on the shifting role of theatre in our dynamic society. Petra Ligtenberg, senior project manager SDG NL https://www.sdgnederland.nl/sdgs/ gave insights to the objectives and progress of the Netherlands. Elly Rijnierse, city maker and entrepreneur from Den Haag, presented her intriguing efforts in her own neighbourhood in the city to create at once both practical and social impacts on SDG 11 (sustainable city; subgoal 3.2). Then the alderman Marcel Oosterveer informed the visitors about Eindhoven’s efforts on SDGs. The plenary ended with very personal interviews of representatives of two impressive citizen initiatives (Parkinson to beat; Stichting Ik Wil). In the two workshop rounds, ALE took responsibility for two workshops. Firstly the workshop: Beyond SDG cherrypicking: using the Economy for the common good’, in cooperation with citizen initiative Ware winst Brabant en Parktheater (including Social innovation-intern Jasper Box), secondly a panel dialogue on local partnerships (SDG 17) for the sustainable city (SDG 11) addressing inclusion (SDG 10) and the livability (SDG 3) with 11 representatives from local/provincial government, companies, third sector and, of course: citizen initiatives.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)