This entry begins by reviewing the definitions of “human”, “environment” and “dichotomy”, consequently turning to the debates concerning the human–environment relationship. Synthesizing various studies, the capability of advanced tool use; language, hyper-sociality, advanced cognition, morality, civilization, technology, and free will are supposed to be distinctly human. However, other studies describe how nonhuman organisms share these same abilities. The biophysical or natural environment is often associated with all living and non-living things that occur naturally. The environment also refers to ecosystems or habitats, including all living organisms or species. The concepts of the biophysical or natural environment are often opposed to the concepts of built or modified environment, which is artificial - constructed or influenced by humans. The built or modified environment typically refers to structures or spaces from gardens to car parks. Today, one of the central questions in regard to human-environment dichotomies centres around the concept of sustainability. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118924396 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
This entry begins by reviewing the definitions of “human”, “environment” and “dichotomy”, consequently turning to the debates concerning the human–environment relationship. Synthesizing various studies, the capability of advanced tool use; language, hyper-sociality, advanced cognition, morality, civilization, technology, and free will are supposed to be distinctly human. However, other studies describe how nonhuman organisms share these same abilities. The biophysical or natural environment is often associated with all living and non-living things that occur naturally. The environment also refers to ecosystems or habitats, including all living organisms or species. The concepts of the biophysical or natural environment are often opposed to the concepts of built or modified environment, which is artificial - constructed or influenced by humans. The built or modified environment typically refers to structures or spaces from gardens to car parks. Today, one of the central questions in regard to human-environment dichotomies centres around the concept of sustainability. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118924396 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
OBJECTIVE: To examine the use of a submaximal exercise test in detecting change in fitness level after a physical training program, and to investigate the correlation of outcomes as measured submaximally or maximally.DESIGN: A prospective study in which exercise testing was performed before and after training intervention.SETTING: Academic and general hospital and rehabilitation center.PARTICIPANTS: Cancer survivors (N=147) (all cancer types, medical treatment completed > or =3 mo ago) attended a 12-week supervised exercise program.INTERVENTIONS: A 12-week training program including aerobic training, strength training, and group sport.MAIN OUTCOME MEASURES: Outcome measures were changes in peak oxygen uptake (Vo(2)peak) and peak power output (both determined during exhaustive exercise testing) and submaximal heart rate (determined during submaximal testing at a fixed workload).RESULTS: The Vo(2)peak and peak power output increased and the submaximal heart rate decreased significantly from baseline to postintervention (P<.001). Changes in submaximal heart rate were only weakly correlated with changes in Vo(2)peak and peak power output. Comparing the participants performing submaximal testing with a heart rate less than 140 beats per minute (bpm) versus the participants achieving a heart rate of 140 bpm or higher showed that changes in submaximal heart rate in the group cycling with moderate to high intensity (ie, heart rate > or =140 bpm) were clearly related to changes in VO(2)peak and peak power output.CONCLUSIONS: For the monitoring of training progress in daily clinical practice, changes in heart rate at a fixed submaximal workload that requires a heart rate greater than 140 bpm may serve as an alternative to an exhaustive exercise test.
Fluorescence microscopy is an indispensable technique to resolve structure and specificity in many scientific areas such as diagnostics, health care, materials- and life sciences. With the development of multi-functional instruments now costing hundreds of thousands of Euros, the availability and access to high-tech instrumentation is increasingly limited to larger imaging facilities. Here, we will develop a cost-effective alternative by combining a commercially available solution for high-resolution confocal imaging (the RCM from confocal.nl) with an open-hardware microscopy framework, the miCube, developed in the Laboratory of Biophysics of Wageningen University & Research. In addition, by implementing a recent invention of the applicant for the spectral separation of different emitters, we will improve the multiplexing capabilities of fluorescence microscopy in general and the RCM in particular. Together, our new platform will help to translate expertise and know-how created in an academic environment into a commercially sustainable future supporting the Dutch technology landscape.