Dienst van SURF
© 2025 SURF
BACKGROUND: Instability of the knee joint during gait is frequently reported by patients with knee osteoarthritis or an anterior cruciate ligament rupture. The assessment of instability in clinical practice and clinical research studies mainly relies on self-reporting. Alternatively, parameters measured with gait analysis have been explored as suitable objective indicators of dynamic knee (in)stability.RESEARCH QUESTION: This literature review aimed to establish an inventory of objective parameters of knee stability during gait.METHODS: Five electronic databases (Pubmed, Embase, Cochrane, Cinahl and SPORTDiscuss) were systematically searched, with keywords concerning knee, stability and gait. Eligible studies used an objective parameter(s) to assess knee (in)stability during gait, being stated in the introduction or methods section. Out of 10717 studies, 89 studies were considered eligible.RESULTS: Fourteen different patient populations were investigated with kinematic, kinetic and/or electromyography measurements during (challenged) gait. Thirty-three possible objective parameters were identified for knee stability, of which the majority was based on kinematic (14 parameters) or electromyography (12 parameters) measurements. Thirty-nine studies used challenged gait (i.e. external perturbations, downhill walking) to provoke knee joint instability. Limited or conflicting results were reported on the validity of the 33 parameters.SIGNIFICANCE: In conclusion, a large number of different candidates for an objective knee stability gait parameter were found in literature, all without compelling evidence. A clear conceptual definition for dynamic knee joint stability is lacking, for which we suggest : "The capacity to respond to a challenge during gait within the natural boundaries of the knee". Furthermore biomechanical gait laboratory protocols should be harmonized, to enable future developments on clinically relevant measure(s) of knee stability during gait.
LINK
Background/Aims: Analogy learning, a motor learning strategy that uses biomechanical metaphors to chunk together explicit rules of a to-be-learned motor skill. This proof-of-concept study aims to establish the feasibility and potential benefits of analogy learning in enhancing stride length regulation in people with Parkinson’s. Methods: Walking performance of thirteen individuals with Parkinson’s was analysed using a Codamotion analysis system. An analogy instruction; “following footprints in the sand” was practiced over 8 walking trials. Single- and dual- (motor and cognitive) task conditions were measured before training, immediately after training and 4-weeks post training. Finally, an evaluation form was completed to examine the interventions feasibility. Findings: Data from 12 individuals (6 females and 6 males, mean age 70, Hoehn and Yahr I-III) were analysed, one person withdrew due to back problems. In the single task condition, statistically and clinically relevant improvements were obtained. A positive trend towards reducing dual task costs after the intervention was demonstrated, supporting the relatively implicit nature of the analogy. Participants reported that the analogy was simple to use and became easier over time. Conclusions: Analogy learning is a feasible and potentially implicit (i.e. reduced working memory demands) intervention to facilitate walking performance in people with Parkinson’s.