Dienst van SURF
© 2025 SURF
The rising rate of preprints and publications, combined with persistent inadequate reporting practices and problems with study design and execution, have strained the traditional peer review system. Automated screening tools could potentially enhance peer review by helping authors, journal editors, and reviewers to identify beneficial practices and common problems in preprints or submitted manuscripts. Tools can screen many papers quickly, and may be particularly helpful in assessing compliance with journal policies and with straightforward items in reporting guidelines. However, existing tools cannot understand or interpret the paper in the context of the scientific literature. Tools cannot yet determine whether the methods used are suitable to answer the research question, or whether the data support the authors’ conclusions. Editors and peer reviewers are essential for assessing journal fit and the overall quality of a paper, including the experimental design, the soundness of the study’s conclusions, potential impact and innovation. Automated screening tools cannot replace peer review, but may aid authors, reviewers, and editors in improving scientific papers. Strategies for responsible use of automated tools in peer review may include setting performance criteria for tools, transparently reporting tool performance and use, and training users to interpret reports.
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
Background:An eHealth tool that coaches employees through the process of reflection has the potential to support employees with moderate levels of stress to increase their capacity for resilience. Most eHealth tools that include self-tracking summarize the collected data for the users. However, users need to gain a deeper understanding of the data and decide upon the next step to take through self-reflection.Objective:In this study, we aimed to examine the perceived effectiveness of the guidance offered by an automated e-Coach during employees’ self-reflection process in gaining insights into their situation and on their perceived stress and resilience capacities and the usefulness of the design elements of the e-Coach during this process.Methods:Of the 28 participants, 14 (50%) completed the 6-week BringBalance program that allowed participants to perform reflection via four phases: identification, strategy generation, experimentation, and evaluation. Data collection consisted of log data, ecological momentary assessment (EMA) questionnaires for reflection provided by the e-Coach, in-depth interviews, and a pre- and posttest survey (including the Brief Resilience Scale and the Perceived Stress Scale). The posttest survey also asked about the utility of the elements of the e-Coach for reflection. A mixed methods approach was followed.Results:Pre- and posttest scores on perceived stress and resilience were not much different among completers (no statistical test performed). The automated e-Coach did enable users to gain an understanding of factors that influenced their stress levels and capacity for resilience (identification phase) and to learn the principles of useful strategies to improve their capacity for resilience (strategy generation phase). Design elements of the e-Coach reduced the reflection process into smaller steps to re-evaluate situations and helped them to observe a trend (identification phase). However, users experienced difficulties integrating the chosen strategies into their daily life (experimentation phase). Moreover, the identified events related to stress and resilience were too specific through the guidance offered by the e-Coach (identification phase), and the events did not recur, which consequently left users unable to sufficiently practice (strategy generation phase), experiment (experimentation phase), and evaluate (evaluation phase) the techniques during meaningful events.Conclusions:Participants were able to perform self-reflection under the guidance of the automated e-Coach, which often led toward gaining new insights. To improve the reflection process, more guidance should be offered by the e-Coach that would aid employees to identify events that recur in daily life. Future research could study the effects of the suggested improvements on the quality of reflection via an automated e-Coach.