Dienst van SURF
© 2025 SURF
Abstract: Unlike manufacturing technology for semiconductors and printed circuit boards, the market for traditional micro assembly lacks a clear public roadmap. More agile manufacturing strategies are needed in an environment in which dealing with change becomes a rule instead of an exception. In this paper, an attempt is made to bring production with universal micro assembly cells to the next level. This is realised by placing a larger number of cells, called Equiplets, in a “Grid”. Equiplets are compact and low-cost manufacturing platforms that can be reconfigured to a broad number of applications. Benchmarking Equiplet production has shown reduced time to market and a smooth transition from R&D to Manufacturing. When higher production volumes are needed, more systems can be placed in parallel to meet the manufacturing demand. Costs of product design changes in the later stage of industrialisation have been reduced due to the modular production in grids, which allows the final design freeze to be postponed as late as possible. The need for invested capital is also pushed backwards accordingly. doi 10.1007/978-3-642-11598-1_32
LINK
Presented at the 11th International Conference on ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer Lviv, Ukraine, May 14-16, 2015. Author supplied: Abstract. User requirements and low-cost small quantity production are new challenges for the modern manufacturing industry. This means that small batch sizes or even the manufacturing of one single product should be affordable. To make such a system cost-effective it should be capable to use the available production resources for many different products in parallel. This paper gives a description of the requirements and architecture of an end-user driven production system. The end-user communicates with the production system by a web interface, so this manufacturing system can be characterized in terms of cloud comput- ing as the implementation of manufacturing as a service, abbreviated to MaaS.
Author supplied: The production system described in this paper in an implementation of an agile agent-based production system. This system is designed to meet the requirements of modern production, where short time to market, requirementdriven production and low cost small quantity production are important issues. The production is done on special devices called equiplets. A grid of these equiplets connected by a fast network is capable of producing a variety of different products in parallel. The multi-agent-based software infrastructure is responsible for the agile manufacturing. A product agent is responsible for the production of a single product and equiplet agents will perform the production steps to assemble the product. This paper describes this multiagent-based production system with the focus on the product agent. Presented at EUMAS 2013 ( 11th European Workshop on Multi-Agent Systems) , At Toulouse.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.