Dienst van SURF
© 2025 SURF
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
Background & aims: Optimal nutritional support during the acute phase of critical illness remains controversial. We hypothesized that patients with low skeletal muscle area and -density may specifically benefit from early high protein intake. Aim of the present study was to determine the association between early protein intake (day 2–4) and mortality in critically ill intensive care unit (ICU) patients with normal skeletal muscle area, low skeletal muscle area, or combined low skeletal muscle area and -density. Methods: Retrospective database study in mechanically ventilated, adult critically ill patients with an abdominal CT-scan suitable for skeletal muscle assessment around ICU admission, admitted from January 2004 to January 2016 (n = 739). Patients received protocolized nutrition with protein target 1.2–1.5 g/kg/day. Skeletal muscle area and -density were assessed on abdominal CT-scans at the 3rd lumbar vertebra level using previously defined cut-offs. Results: Of 739 included patients (mean age 58 years, 483 male (65%), APACHE II score 23), 294 (40%) were admitted with normal skeletal muscle area and 445 (60%) with low skeletal muscle area. Two hundred (45% of the low skeletal muscle area group) had combined low skeletal muscle area and -density. In the normal skeletal muscle area group, no significant associations were found. In the low skeletal muscle area group, higher early protein intake was associated with lower 60-day mortality (adjusted hazard ratio (HR) per 0.1 g/kg/day 0.82, 95%CI 0.73–0.94) and lower 6-month mortality (HR 0.88, 95%CI 0.79–0.98). Similar associations were found in the combined low skeletal muscle area and -density subgroup (HR 0.76, 95%CI 0.64–0.90 for 60-day mortality and HR 0.80, 95%CI 0.68–0.93 for 6-month mortality). Conclusions: Early high protein intake is associated with lower mortality in critically ill patients with low skeletal muscle area and -density, but not in patients with normal skeletal muscle area on admission. These findings may be a further step to personalized nutrition, although randomized studies are needed to assess causality.
Background & aims: Low muscle mass and -quality on ICU admission, as assessed by muscle area and -density on CT-scanning at lumbar level 3 (L3), are associated with increased mortality. However, CT-scan analysis is not feasible for standard care. Bioelectrical impedance analysis (BIA) assesses body composition by incorporating the raw measurements resistance, reactance, and phase angle in equations. Our purpose was to compare BIA- and CT-derived muscle mass, to determine whether BIA identified the patients with low skeletal muscle area on CT-scan, and to determine the relation between raw BIA and raw CT measurements. Methods: This prospective observational study included adult intensive care patients with an abdominal CT-scan. CT-scans were analysed at L3 level for skeletal muscle area (cm2) and skeletal muscle density (Hounsfield Units). Muscle area was converted to muscle mass (kg) using the Shen equation (MMCT). BIA was performed within 72 h of the CT-scan. BIA-derived muscle mass was calculated by three equations: Talluri (MMTalluri), Janssen (MMJanssen), and Kyle (MMKyle). To compare BIA- and CT-derived muscle mass correlations, bias, and limits of agreement were calculated. To test whether BIA identifies low skeletal muscle area on CT-scan, ROC-curves were constructed. Furthermore, raw BIA and CT measurements, were correlated and raw CT-measurements were compared between groups with normal and low phase angle. Results: 110 patients were included. Mean age 59 ± 17 years, mean APACHE II score 17 (11–25); 68% male. MMTalluri and MMJanssen were significantly higher (36.0 ± 9.9 kg and 31.5 ± 7.8 kg, respectively) and MMKyle significantly lower (25.2 ± 5.6 kg) than MMCT (29.2 ± 6.7 kg). For all BIA-derived muscle mass equations, a proportional bias was apparent with increasing disagreement at higher muscle mass. MMTalluri correlated strongest with CT-derived muscle mass (r = 0.834, p < 0.001) and had good discriminative capacity to identify patients with low skeletal muscle area on CT-scan (AUC: 0.919 for males; 0.912 for females). Of the raw measurements, phase angle and skeletal muscle density correlated best (r = 0.701, p < 0.001). CT-derived skeletal muscle area and -density were significantly lower in patients with low compared to normal phase angle. Conclusions: Although correlated, absolute values of BIA- and CT-derived muscle mass disagree, especially in the high muscle mass range. However, BIA and CT identified the same critically ill population with low skeletal muscle area on CT-scan. Furthermore, low phase angle corresponded to low skeletal muscle area and -density. Trial registration: ClinicalTrials.gov (NCT02555670).