Dienst van SURF
© 2025 SURF
This work is on 3-D localization of sensor motes in massive swarms based solely on 1-D relative distance-measurements between neighbouring motes. We target applications in remote and difficult-to-access environments such as the exploration and mapping of the interior of oil reservoirs where hundreds or thousands of motes are used. These applications bring forward the need to use highly miniaturized sensor motes of less than 1 centimeter, thereby significantly limiting measurement and processing capabilities. These constraints, in combination with additional limitations posed by the environments, impede the communication of unique hardware identifiers, as well as communication with external, fixed beacons.
This paper introduces a novel distributed algorithm designed to optimize the deployment of access points within Mobile Ad Hoc Networks (MANETs) for better service quality in infrastructure less environments. The algorithm operates based on local, independent execution by each network node, thus ensuring a high degree of scalability and adaptability to changing network conditions. The primary focus is to match the spatial distribution of access points with the distribution of client devices while maintaining strong connectivity to the network root. Using autonomous decision-making and choreographed path-planning, this algorithm bridges the gap between demand-responsive network service provision and the maintenance of crucial network connectivity links. The assessment of the performance of this approach is motivated by using numerical results generated by simulations.
A novel type of application for the exploration of enclosed or otherwise difficult to access environments requires large quantities of miniaturized sensor nodes to perform measurements while they traverse the environment in a “go with the flow” approach. Examples of these are the exploration of underground cavities and the inspection of industrial pipelines or mixing tanks, all of which have in common that the environments are difficult to access and do not allow position determination using e.g. GPS or similar techniques. The sensor nodes need to be scaled down towards the millimetre range in order to physically fit through the narrowest of parts in the environments and should measure distances between each other in order to enable the reconstruction of their positions relative to each other in offline analysis. Reaching those levels of miniaturization and enabling reconstruction functionality requires: 1) novel reconstruction algorithms that can deal with the specific measurement limitations and imperfections of millimetre-sized nodes, and 2) improved understanding of the relation between the highly constraint hardware design space of the sensor nodes and the reconstruction algorithms. To this end, this work provides a novel and highly robust sensor swarm reconstruction algorithm and studies the effect of hardware design trade-offs on its performance. Our findings based on extensive simulations, which push the reconstruction algorithm to its breaking point, provide important guidelines for the future development of millimetre-sized sensor nodes.
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.