Dienst van SURF
© 2025 SURF
Twirre is a new architecture for mini-UAV platforms designed for autonomous flight in both GPS-enabled and GPS-deprived applications. The architecture consists of low-cost hardware and software components. High-level control software enables autonomous operation. Exchanging or upgrading hardware components is straightforward and the architecture is an excellent starting point for building low-cost autonomous mini-UAVs for a variety of applications. Experiments with an implementation of the architecture are in development, and preliminary results demonstrate accurate indoor navigation
MULTIFILE
This research reviews the current literature on the impact of Artificial Intelligence (AI) in the operation of autonomous Unmanned Aerial Vehicles (UAVs). This paper examines three key aspects in developing the future of Unmanned Aircraft Systems (UAS) and UAV operations: (i) design, (ii) human factors, and (iii) operation process. The use of widely accepted frameworks such as the "Human Factors Analysis and Classification System (HFACS)" and "Observe– Orient–Decide–Act (OODA)" loops are discussed. The comprehensive review of this research found that as autonomy increases, operator cognitive workload decreases and situation awareness improves, but also found a corresponding decline in operator vigilance and an increase in trust in the AI system. These results provide valuable insights and opportunities for improving the safety and efficiency of autonomous UAVs in the future and suggest the need to include human factors in the development process.
Twirre V2 is the evolution of an architecture for mini-UAV platforms which allows automated operation in both GPS-enabled and GPSdeprived applications. This second version separates mission logic, sensor data processing and high-level control, which results in reusable software components for multiple applications. The concept of Local Positioning System (LPS) is introduced, which, using sensor fusion, would aid or automate the flying process like GPS currently does. For this, new sensors are added to the architecture and a generic sensor interface together with missions for landing and following a line have been implemented. V2 introduces a software modular design and new hardware has been coupled, showing its extensibility and adaptability
Binnen het RAAK-project Smart Vision for UAVs is kennis ontwikkeld om UAVs autonoom te laten vliegen. Deze kennis is verankerd in de Twirre-architectuur voor UAVs. Vanaf het begin is afgesproken dat alle ontwikkelingen (zoals de architectuur, software en beschrijving van hardware) van Twirre openbaar zijn. De Twirre-architectuur is getest met meerdere prototypes. Met de Top-up wordt het mogelijk op korte termijn de Twirre-architectuur te documenteren en open source te maken. Daardoor wordt de verworven kennis openbaar toegankelijk en de verdere ontwikkeling daarvan versneld. Een unique selling point van Twirre is dat deze architectuur niet ontworpen is voor een specifieke UAV of voor UAVs van een specifieke leverancier. Twirre simuleert in feite de stick-commando’s van de grondpiloot en communiceert met de rest van de hardware van de UAV als of het een ontvanger is die radiografische de stick-commando’s ontvangt. Omdat de communicatie van de ontvangers met de rest van de UAV-hardware is gestandaardiseerd, is Twirre UAV-leverancier agnostisch. De Twirre- architectuur is goed schaalbaar van kleine tot grote UAVs. Het gebruik van low-cost componenten maakt Twirre niet alleen geschikt voor het bedrijfsleven, maar ook voor onderwijs- en hobbyprojecten. Twirre voegt aan een commodity UAV een Local Position System (LPS) toe met een breed scala aan sensoren, zoals (stereo) camera’s, ultrasoon sonars, LIDAR’s, gyroscopen, acceleratiemeters, magnetisch kompas en RTK GPS. Alle noodzakelijke berekeningen om met de UAV geautomatiseerd te kunnen vliegen, worden op een processorbord op de UAV zelf uitgevoerd. Verder zijn er software missie-bouwstenen ontwikkeld die herbruikbaar zijn, zodat sneller en eenvoudiger nieuwe missies ontwikkeld kunnen worden. Over Twirre zijn twee peer-reviewed wetenschappelijke artikelen gepubliceerd. Het Twirre-concept wordt op dit moment verder doorontwikkeld en geëvalueerd in projecten op verschillende toepassingsgebieden: • het TKI Wind op Zee project Inspection with automated UAVs using Computer Vision; • het KIEM SI project Autonoom navigeren met drones in de glastuinbouw; • binnen het Region of Smart Factory project Smart Sailing wordt door de NHL een spin-off van Twirre gebruikt; • er is een KIEM SI aangevraagd voor het project Autonoom navigeren met drones in magazijnen. De verwachting is dat er in de nabije toekomst veel vraag zal zijn naar nieuwe slimme toepassingen van autonome UAVs. De Twirre architectuur kan hieraan een belangrijke bijdrage leveren. Door Twirre open source en public domain te maken, worden de ontwikkeling en het laagdrempelig gebruik van Twirre gestimuleerd. Hiermee komt de kennis van Twirre tevens beschikbaar voor derden: bedrijven, instellingen en personen die niet bij het RAAK- project betrokken waren. Door een online-Twirre-community op te zetten, wordt de verdere ontwikkeling van Twirre nog meer versneld en wordt het gebruik ervan opgeschaald. In de community worden bijdragen van derden aan de Twirre-architectuur toegevoegd en beschikbaar gesteld aan iedereen.