AIM: To systematically review the available literature on the diagnostic accuracy of questionnaires and measurement instruments for headaches associated with musculoskeletal symptoms.
DESIGN: Articles were eligible for inclusion when the diagnostic accuracy (sensitivity/specificity) was established for measurement instruments for headaches associated with musculoskeletal symptoms in an adult population. The databases searched were PubMed (1966-2018), Cochrane (1898-2018) and Cinahl (1988-2018). Methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for criterion validity. When possible, a meta-analysis was performed. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations were applied to establish the level of evidence per measurement instrument.
RESULTS: From 3450 articles identified, 31 articles were included in this review. Eleven measurement instruments for migraine were identified, of which the ID-Migraine is recommended with a moderate level of evidence and a pooled sensitivity of 0.87 (95% CI: 0.85-0.89) and specificity of 0.75 (95% CI: 0.72-0.78). Six measurement instruments examined both migraine and tension-type headache and only the Headache Screening Questionnaire - Dutch version has a moderate level of evidence with a sensitivity of 0.69 (95% CI 0.55-0.80) and specificity of 0.90 (95% CI 0.77-0.96) for migraine, and a sensitivity of 0.36 (95% CI 0.21-0.54) and specificity of 0.86 (95% CI 0.74-0.92) for tension-type headache. For cervicogenic headache, only the cervical flexion rotation test was identified and had a very low level of evidence with a pooled sensitivity of 0.83 (95% CI 0.72-0.94) and specificity of 0.82 (95% CI 0.73-0.91).
DISCUSSION: The current review is the first to establish an overview of the diagnostic accuracy of measurement instruments for headaches associated with musculoskeletal factors. However, as most measurement instruments were validated in one study, pooling was not always possible. Risk of bias was a serious problem for most studies, decreasing the level of evidence. More research is needed to enhance the level of evidence for existing measurement instruments for multiple headaches.
Document (PDF)
Open Access