The main challenge for the Dutch and European textile and clothing sector is to make a paradigm shift from labour intensive industry to knowledge based industry. This shift is essential for gaining a competitive edge and to develop innovative products and eco-friendly processes. A promising technology to achieve this is digital printing. This future oriented process is aimed to achieve high energy, water, and chemical savings and therefore a drastic reduction of waste. The technology breakthrough is based on a novel Eco-friendly flexible digital process. The basic components of Inkjet printers are hardware, software, inks and the substrate, which in this case is a textile.Inkjet processes can be divided in two main categories, image printing and functional printing. Image printing is already a mature technology and commercially available. The biggest advantages of inkjet printing over screen printing techniques is ease of operation, cost savings and most importantly ability to handle smaller volume (mass customisation). The functional printing is still in the research and development stage. It offers immense possibilities to bring various functional and nano-materials on textile surface on demand in a continuous process at atmospheric conditions and room temperature. Additionally functionality can be delivered at specific location on the textile with a possibility to apply more than one functionality either side by side or layer by layer. Inkjet processes could replace conventional high temperature and wet textile processes. Digital micro-disposal of fluids is expected to alter textile economics in terms of production speeds and on demand production.Nevertheless inkjet printing/finishing on textiles surfaces with different functional formulations is a major challenge. This is because of the close interaction between ink properties and chemistry, the piezo inkjets and the textile substrate. A typical process involves the development of stable jettable colloidal functional inks that will be delivered on well prepared textile substrate, followed by proper curing/fixation.The case we discuss in the manuscript is the development of a smart textile based heatable pair of trousers especially designed for people with disabilities. The inkjet printed textile samples were prepared and compared with conductive samples produced with well-established techniques such as weaving, knitting, nonwoven techniques and embroidering.
Multifile
Niet bekend